Go interfaces are not inheritance
Overview
Go interfaces readily permit multiple structs to possess functions with identical arguments and return values. However, this mechanism differs from the extends keyword in Java, which appropriately extends and overrides the behavior of internal functions. A thorough comprehension of Go's compositional code reuse is essential to avoid conflating it with inheritance; nevertheless, achieving a perfect theoretical understanding from the outset is challenging. Let us examine common error scenarios.
Frequent Errors
Beginners may encounter the following errors:
1package main
2import (
3 "fmt"
4 "strings"
5)
6
7type Fruits interface {
8 GetBrix() float64
9 GetName() string
10 SetLabel()
11 GetLabel(string) string
12 PrintAll()
13}
14
15type Apple struct {
16 Label string
17 Name string
18 Brix float64
19}
20
21type Watermelon struct {
22 Label string
23 Name string
24 Brix float64
25}
26
27func (a *Apple) PrintAll() {
28 fmt.Printf("Fruit: %s, Label: %s, Brix: %v\n", a.Name, a.Label, a.Brix)
29}
30
31const (
32 NO_LABEL = "EMPTY LABEL"
33)
34
35func (a *Apple) SetLabel(lbl string) {
36 a.Brix = 14.5;
37 a.Name = "apple";
38 lbl_lower := strings.ToLower(lbl)
39 if strings.Contains(lbl_lower, a.Name) {
40 fmt.Println("Succeed: Label was ", lbl)
41 a.Label = lbl;
42 } else {
43 fmt.Println("Failed: Label was ", lbl)
44 a.Label = NO_LABEL;
45 }
46}
47
48func (w *Watermelon) SetLabel(lbl string) {
49 w.Brix = 10;
50 w.Name = "watermelon";
51 lbl_lower := strings.ToLower(lbl)
52 if strings.Contains(lbl_lower, w.Name) {
53 w.Label = lbl;
54 } else {
55 w.Label = NO_LABEL;
56 }
57}
58
59func main() {
60 fmt.Println("Inheritance test #1")
61 apple := new(Apple)
62 watermelon := apple
63 apple.SetLabel("Apple_1")
64 fmt.Println("Apple, before copied to Watermelon")
65 apple.PrintAll()
66 watermelon.SetLabel("WaterMelon_2")
67 fmt.Println("Apple, after copied to Watermelon")
68 apple.PrintAll()
69 fmt.Println("Watermelon, which inherited Apple's Method")
70 watermelon.PrintAll()
71}
This code appears unproblematic if one mistakenly assumes that Go adheres to traditional inheritance. However, its output is as follows:
1Inheritance test #1
2Succeed: Label was Apple_1
3Apple, before copied to Watermelon
4Fruit: apple, Label: Apple_1, Brix: 14.5
5Failed: Label was WaterMelon_2
6Apple, after copied to Watermelon
7Fruit: apple, Label: EMPTY LABEL, Brix: 14.5
8Watermelon, which inherited Apple's Method
9Fruit: apple, Label: EMPTY LABEL, Brix: 14.5
Here, Go's behavior becomes unequivocally clear.
1watermelon := apple
This code does not convert an Apple into a Watermelon class at all.
Instead, watermelon is merely a pointer to apple.
It must be re-emphasized here: Go does not adhere to the traditional concept of inheritance.
Coding with this misunderstanding can lead to critical errors, such as the creation of meaningless pointers or the unexpected duplication of functions intended for other structs.
What, then, constitutes exemplary code?
Appropriate Example in Go Language
1package main
2import (
3 "fmt"
4 "strings"
5)
6
7type Fruits interface {
8 GetBrix() float64
9 GetName() string
10 SetLabel()
11 GetLabel(string) string
12 PrintAll()
13}
14
15type BaseFruit struct {
16 Name string
17 Brix float64
18}
19
20type Apple struct {
21 Label string
22 Fruit BaseFruit
23}
24
25type Watermelon struct {
26 Label string
27 Fruit BaseFruit
28
29}
30
31func (b *BaseFruit) PrintAll() {
32 fmt.Printf("Fruit: %s, Brix: %v\n", b.Name, b.Brix)
33}
34
35
36const (
37 NO_LABEL = "EMPTY LABEL"
38)
39
40func (a *Apple) SetLabel(lbl string) {
41 a.Fruit.Brix = 14.5;
42 a.Fruit.Name = "apple";
43 lbl_lower := strings.ToLower(lbl)
44 if strings.Contains(lbl_lower, a.Fruit.Name) {
45 fmt.Println("Succeed: Label was ", lbl)
46 a.Label = lbl;
47 } else {
48 fmt.Println("Failed: Label was ", lbl)
49 a.Label = NO_LABEL;
50 }
51 fmt.Printf("Fruit %s label set to %s\n", a.Fruit.Name, a.Label);
52 a.Fruit.PrintAll()
53}
54
55func (w *Watermelon) SetLabel(lbl string) {
56 w.Fruit.Brix = 10;
57 w.Fruit.Name = "Watermelon";
58 lbl_lower := strings.ToLower(lbl)
59 if strings.Contains(lbl_lower, w.Fruit.Name) {
60 w.Label = lbl;
61 } else {
62 w.Label = NO_LABEL;
63 }
64 fmt.Printf("Fruit %s label set to %s\n", w.Fruit.Name, w.Label);
65 w.Fruit.PrintAll()
66}
67
68func main() {
69 apple := new(Apple)
70 watermelon := new(Watermelon)
71 apple.SetLabel("Apple_1")
72 watermelon.SetLabel("WaterMelon_2")
73}
However, it is possible to make Go appear like it supports inheritance. This is exemplified by anonymous embedding, which is achieved by declaring an inner struct without a name. In such cases, fields of the inner struct can be accessed directly without explicit naming. This pattern, where fields of an inner struct are promoted to the outer struct, can enhance readability in certain situations. However, it is not recommended when the inner struct needs to be explicitly visible.
1package main
2import (
3 "fmt"
4 "strings"
5)
6
7type Fruits interface {
8 GetBrix() float64
9 GetName() string
10 SetLabel()
11 GetLabel(string) string
12 PrintAll()
13}
14
15type BaseFruit struct {
16 Name string
17 Brix float64
18}
19
20type Apple struct {
21 Label string
22 BaseFruit
23}
24
25type Watermelon struct {
26 Label string
27 BaseFruit
28
29}
30
31func (b *BaseFruit) PrintAll() {
32 fmt.Printf("Fruit: %s, Brix: %v\n", b.Name, b.Brix)
33}
34
35
36const (
37 NO_LABEL = "EMPTY LABEL"
38)
39
40func (a *Apple) SetLabel(lbl string) {
41 a.Brix = 14.5;
42 a.Name = "apple";
43 lbl_lower := strings.ToLower(lbl)
44 if strings.Contains(lbl_lower, a.Name) {
45 fmt.Println("Succeed: Label was ", lbl)
46 a.Label = lbl;
47 } else {
48 fmt.Println("Failed: Label was ", lbl)
49 a.Label = NO_LABEL;
50 }
51 fmt.Printf("Fruit %s label set to %s\n", a.Name, a.Label);
52 a.PrintAll()
53}
54
55func (w *Watermelon) SetLabel(lbl string) {
56 w.Brix = 10;
57 w.Name = "Watermelon";
58 lbl_lower := strings.ToLower(lbl)
59 if strings.Contains(lbl_lower, w.Name) {
60 w.Label = lbl;
61 } else {
62 w.Label = NO_LABEL;
63 }
64 fmt.Printf("Fruit %s label set to %s\n", w.Name, w.Label);
65 w.PrintAll()
66}
67
68func main() {
69 apple := new(Apple)
70 watermelon := new(Watermelon)
71 apple.SetLabel("Apple_1")
72 watermelon.SetLabel("WaterMelon_2")
73}
This example demonstrates the following difference:
1w.PrintAll() // Automatic promotion call via the anonymous struct, not w.Fruit.PrintAll()
Both examples highlight these crucial points:
- Keep
mainconcise; functions should be feature-specific. - Use distinct objects for distinct structs.
- Employ internal structs when sharing is necessary.
What advantages does such a programming philosophy offer?
Advantages
- Clear distinction between methods that require sharing and those that do not.
- Separation of responsibilities for individual structs and methods.
- Structurally separated code based on specified functional requirements.
Initially, Go's deviation from traditional OOP may seem unfamiliar, but with practice, it enables explicit programming.
Summary
- Isolate responsibilities.
- Divide into granular struct units.
- Methods should not be understood as abstract classes in Java.
- Engage in explicit and concrete programming. The Go language should be approached as simpler and more individualistic than traditional OOP models. Instead of programming expansively, strive for incremental and structurally separated code.