Skracanie czasu odpowiedzi endpointów w Go – wykorzystanie kolejek zadań
Streszczenie
Podczas początkowej nauki języka Go często dochodzi do implementacji serwerów backendowych. Rozważmy przykład tworzenia implementacji, w której strumienie plików są odbierane z RestAPI i przesyłane na serwer. Serwer net/http w języku Go domyślnie obsługuje wiele żądań jednocześnie, zatem jednoczesne przesyłanie wielu plików nie stanowi problemu. Jednakże, jeśli wszystkie operacje po odebraniu strumienia są przetwarzane synchronicznie, odpowiedź z punktu końcowego ulegnie opóźnieniu. Zapoznajmy się z techniką zapobiegania takim sytuacjom.
Przyczyna
Odbieranie strumienia zazwyczaj zajmuje dużo czasu, a w przypadku dużych plików pojedyncze żądanie może być przetwarzane przez kilka minut. W takich sytuacjach istotne jest szybkie przetwarzanie operacji po odebraniu danych. Ten przykładowy scenariusz zakłada odebranie strumienia, zapisanie go jako plik tymczasowy, a następnie wypchnięcie do kontenera. W tym przypadku, jeśli część odpowiedzialna za wypychanie pliku tymczasowego do kontenera zostanie obsłużona przez pulę workerów, można skrócić opóźnienie odpowiedzi.
1package file_upload
2
3import (
4 "fmt"
5 "io"
6 "log"
7 "net/http"
8 "os"
9 "path/filepath"
10 "time"
11)
12
13const uploadTempDir = "/tmp/incus_uploads" // Host temporary directory
14
15// UploadTask holds data for asynchronous file push.
16type UploadTask struct {
17 HostTempFilePath string
18 ContainerName string
19 HostFilename string
20 ContainerDestinationPath string
21}
22
23// UploadHandler processes file uploads. Saves to temp file, then queues for Incus push.
24func UploadHandler(wr http.ResponseWriter, req *httpRequest) {
25 if req.Method != http.MethodPost {
26 http.Error(wr, "POST method required.", http.StatusMethodNotAllowed)
27 return
28 }
29 originalFilePath := req.Header.Get("X-File-Path")
30 originalFilename := filepath.Base(req.Header.Get("X-Host-Path"))
31 containerName := req.Header.Get("X-Container-Name")
32 if originalFilePath == "" || containerName == "" {
33 http.Error(wr, "Missing X-File-Path or X-Container-Name header.", http.StatusBadRequest)
34 return
35 }
36
37 cleanContainerDestPath := filepath.Clean(originalFilePath)
38 if !filepath.IsAbs(cleanContainerDestPath) {
39 http.Error(wr, "File path must be absolute.", http.StatusBadRequest)
40 return
41 }
42
43 // Create unique temporary file path on host
44 tempFileName := fmt.Sprintf("%d-%s", time.Now().UnixNano(), filepath.Base(originalFilePath))
45 hostTempFilePath := filepath.Join(uploadTempDir, tempFileName)
46
47 if err := os.MkdirAll(uploadTempDir, 0755); err != nil {
48 log.Printf("ERROR: Failed to create temp upload directory: %v", err)
49 http.Error(wr, "Server error.", http.StatusInternalServerError)
50 return
51 }
52
53 // Create and copy request body to temporary file (synchronous)
54 outFile, err := os.Create(hostTempFilePath)
55 if err != nil {
56 log.Printf("ERROR: Failed to create temporary file: %v", err)
57 http.Error(wr, "Server error.", http.StatusInternalServerError)
58 return
59 }
60 defer outFile.Close()
61
62 bytesWritten, err := io.Copy(outFile, req.Body)
63 if err != nil {
64 outFile.Close()
65 os.Remove(hostTempFilePath)
66 log.Printf("ERROR: Failed to copy request body to temp file: %v", err)
67 http.Error(wr, "File transfer failed.", http.StatusInternalServerError)
68 return
69 }
70 log.Printf("Upload Info: Received %d bytes, saved to %s.", bytesWritten, hostTempFilePath)
71
72 // Enqueue task for asynchronous Incus push
73 task := UploadTask{
74 HostTempFilePath: hostTempFilePath,
75 ContainerName: containerName,
76 HostFilename : originalFilename,
77 ContainerDestinationPath: cleanContainerDestPath,
78 }
79 EnqueueTask(task) //THIS PART
80 log.Printf("Upload Info: Task enqueued for %s to %s.", originalFilePath, containerName)
81
82 // Send immediate 202 Accepted response
83 wr.WriteHeader(http.StatusAccepted)
84 fmt.Fprintf(wr, "File '%s' queued for processing on container '%s'.\n", originalFilename, containerName)
85}
Zauważyli Państwo, że w części oznaczonej jako „THIS PART” zadanie jest wstawiane do kolejki.
Teraz przeanalizujmy, jak działa kolejka zadań.
1package file_upload
2
3import (
4 "log"
5 "sync"
6)
7
8var taskQueue chan UploadTask
9var once sync.Once
10
11// InitWorkQueue initializes the in-memory task queue.
12func InitWorkQueue() {
13 once.Do(func() {
14 taskQueue = make(chan UploadTask, 100)
15 log.Println("Upload Info: Work queue initialized.")
16 })
17}
18
19// EnqueueTask adds an UploadTask to the queue.
20func EnqueueTask(task UploadTask) {
21 if taskQueue == nil {
22 log.Fatal("ERROR: Task queue not initialized.")
23 }
24 taskQueue <- task
25 log.Printf("Upload Info: Queue: Task enqueued. Size: %d", len(taskQueue))
26}
27
28// DequeueTask retrieves an UploadTask from the queue, blocking if empty.
29func DequeueTask() UploadTask {
30 if taskQueue == nil {
31 log.Fatal("ERROR: Task queue not initialized.")
32 }
33 task := <-taskQueue
34 log.Printf("Upload Info: Queue: Task dequeued. Size: %d", len(taskQueue))
35 return task
36}
37
38// GetQueueLength returns current queue size.
39func GetQueueLength() int {
40 if taskQueue == nil {
41 return 0
42 }
43 return len(taskQueue)
44}
Przedstawiona przykładowa kolejka zadań jest zaimplementowana w sposób prosty. Ta kolejka zadań ma prostą strukturę, która pobiera zadania z kanału, gdzie są one umieszczone w kolejce.
Poniżej przedstawiono metodę workera służącą do wypychania plików do kontenera po ich przesłaniu. Obecna metoda jest pętlą nieskończoną w celu zapewnienia dobrej responsywności i łatwości implementacji, jednak można dodać algorytmy w zależności od potrzeb.
1func StartFilePushWorker() {
2 for {
3 task := DequeueTask()
4 log.Printf("Upload Info: Worker processing task for %s from %s.", task.ContainerName, task.HostFilename)
5
6 // Defer cleanup of the temporary file
7 defer func(filePath string) {
8 if err := os.Remove(filePath); err != nil {
9 log.Printf("ERROR: Worker: Failed to remove temp file '%s': %v", filePath, err)
10 } else {
11 log.Printf("Upload Info: Worker: Cleaned up temp file: %s", filePath)
12 }
13 }(task.HostTempFilePath)
14
15 // Process task with retries for transient Incus errors
16 for i := 0; i <= MaxRetries; i++ {
17 err := processUploadTask(task) //separate upload task
18 if err == nil {
19 log.Printf("SUCCESS: Worker: Task completed for %s.", task.ContainerName)
20 break
21 }
22
23 isTransient := true
24 if err.Error() == "incus: container not found" { // Example permanent error
25 isTransient = false
26 }
27
28 if isTransient && i < MaxRetries {
29 log.Printf("WARNING: Worker: Task failed for %s (attempt %d/%d): %v. Retrying.",
30 task.ContainerName, i+1, MaxRetries, err)
31 time.Sleep(RetryDelay)
32 } else {
33 log.Printf("ERROR: Worker: Task permanently failed for %s after %d attempts: %v.",
34 task.ContainerName, i+1, err)
35 break
36 }
37 }
38 }
39}
Po pierwsze, funkcja ta nieustannie próbuje pobrać zadania z kolejki. Następnie, w ramach zakresu ponownych prób, podejmuje próbę przesłania z pliku tymczasowego do kontenera, a nie ze strumienia do pliku tymczasowego.
Korzyści
Zaletą takiego podejścia jest możliwość skrócenia czasu opóźnienia w przetwarzaniu kolejnych zadań, pod warunkiem prawidłowego przesłania strumienia, oraz zapobieganie wyczerpaniu zasobów spowodowanemu równoczesnymi operacjami na kontenerach. Jak widać w obecnym kodzie, liczba równoczesnych operacji na kontenerach jest ograniczona przez liczbę kanałów. W ten sposób przeanalizowaliśmy praktyczny przykład wykorzystania przetwarzania równoległego w Go. Aby zapoznać się z większą liczbą przykładów, prosimy odwiedzić poniższe linki.Moduł zawierający przykłady Projekt wykorzystujący przykłady Sam projekt zawiera wiele dodatkowych komponentów, dlatego w przypadku nauki o workerach wystarczy pobieżnie zapoznać się z tym, w jaki sposób funkcja init workerów jest wywoływana w main.go. Moduł zawiera również inne typy workerów, dlatego prosimy o zapoznanie się z nimi.